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ABSTRACT. In this paper we show that every nonsingular con-
servative ergodic n-to-one endomorphism of a Lebesgue prob-
ability space has a factor which is isomorphic to the Cartesian
product of an automorphism with a one-sided shift. The mea-
sure on the product space is always a nonsingular joining of
the factor measures on each factor, but is not in general a
product measure. It decomposes over the automorphic fac-
tor into a family of measures each of which is trivial on the
tail o-algebra of the shift. We give necessary and sufficient
conditions under which the measure is a product measure and
study the marginal measures in the general case. Necessary
and sufficient conditions are given under which the marginal
measure on the shift space is exact. We show that the theo-
rem cannot be strengthened by constructing a finite measure-
preserving ergodic two-to-one endomorphism whose product
structure cannot be given product measure.

1. Introduction and background. In this paper we show that every
nonsingular conservative ergodic n-to-one endomorphism of a Lebesgue prob-
ability space has a factor which is isomorphic to the Cartesian product of an
automorphism with a one-sided shift. The measure on the product space is al-
ways a nonsingular joining of the factor measures on each factor, but is not in
general a product measure. It decomposes over the automorphic factor into a
family of measures each of which is trivial on the tail o-algebra of the shift. We
give necessary and sufficient conditions under which the measure is a product
measure and study the marginal measures in the general case. The automorphic
factor is always conservative, nonsingular, and ergodic, and we give necessary
and sufficient conditions under which the marginal measure on the shift space is
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We give an example to show that the theorem cannot be strengthened; we
construct a finite measure-preserving ergodic two-to-one endomorphism whose
product structure cannot be given product measure.

The main theorem of this paper is the following.

Theorem. Assume thatT is an n-to-one nonsingular ergodic conservative
endomorphism of (X,B,u). Then T has a factor which is isomorphic to the
Cartesian product of an automorphism ® with an n-to-one shift o on the product
space (Y x Z, F x D, m). The measure m is of the following form: for any

CeFxD,
m(C) = / / dpy(2) du(y),
Y J{z:(y,2)€C}

where v is a nonsingular conservative ergodic measure for the automorphism @,
and each py is a tail trivial measure for o on Z. Furthermore, m is a nonsingular
joining for ® x o with respect to the factor measures v on (Y,F) and p on (Z,D).

We recall that a measure m on (Y x Z, F x D) has marginal measures on
Y and Z, defined by m(A x Z) and m(Y x B), respectively, for A € F, B € D.
Generally speaking, any measure on (Y x Z, F x D) whose marginal measures
are v on (Y,F) and p on (Z,D) is called a joining of v and p.

Throughout this paper we will assume that (X,B,u) is a Lebesgue proba-
bility space and T' : X — X is a nonsingular conservative ergodic endomorphism
which is surjective and countable-to-one almost everywhere. (The assumption
that u(X) < oo results in no loss of generality [4].) By a result of Rohlin [13],
[19] we can assume by replacing X by a measurable T-invariant subset of full
measure if necessary that T is forward nonsingular as well so that T satisfies:
for all A € B, u(A) =0 & u(T~1A) = 0 & p(TA) = 0. We apply a well-known
result of Rohlin [13] to obtain a measurable partition ¢ = {A;,A2,As,...} of X
into at most countably many pieces, called atoms, satisfying:

(1) p(A;) > 0 for each i
(ii) the restriction of T to each A;, which we will write as T}, is one-to-one;
(iii) each A; is of maximal measure in X \ |J,; A; with respect to property (ii);
(iv) Ty is one-to-one and onto X (by numbering the atoms so that p(TA4;) >
u(TA;4,) for i € N).

When we say that an endomorphism T is n-to-one, we mean that every
partition ¢ = {4, Aj, As,...} satisfying (i)-(iv) contains precisely n atoms
and that T; is one-to-one and onto X for each i = 1,...,n. Equivalently, for
p-a.e. T € X, the set T~z contains exactly n points. An endomorphism T is
conservative if for every set A of positive measure, there exists an m € N such
that w(T~™ANA) > 0.
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For each z € A;, let

auT;
Tun(z) = =gt @)

and for z € X, let

JuT(x) = ZJpTi (x)XAi (.’L’)

This is the Jacobian function for 7', defined by W. Parry [12], and is independent
of the choice of (. Our nonsingularity assumptions imply that J,r > 0 p-a.e.
We then have the following identities holding p-a.e. (see [8] or [15]):

_ duT—' = 1
W) Dur(@) = =g —(@) = yg;z Jur(y)’
@) wur(z) = E;q#_—l(:rx) - m.

The function w,r satisfies for every f € L*(X,B,u) :

3) /X H(T2) - wur () dyu(z) = /x £() du(z).

For any measurable function w satisfying (3) in place of w,r, we say that w is
Markovian for T and p, and it was shown in [16] that w,r is the unique T~'B
measurable function which is Markovian for T' and . Thus, any w which is
Markovian for T and p satisfies w € LY(X,B,u) and E,(w | T7'B) = wyr.
Here E,(h | T~1B) denotes the conditional expectation of h € L*(X,B,u) with
respect to the sub-o-algebra T—!B. Similarly,

i ok
w[.tTk (x) = dﬂT_k (T "E)

is the unique T~*B measurable function which is Markovian for T* and u. In

particular, wy(k,z) = wur(z) - wur(Tz) - wur(T*~1z) is Markovian for T* and
p, 50 Ey (wpu(k, -) | T7*B) = w .

2. The maximal automorphic factor of T. We recall that a nonsingular
endomorphism T of (X, B, i) is said to be ezact if the tail o-algebra (5,7~ "B
is trivial, i.e., if it consists of {@, X} mod sets of u measure 0 (cf. [3]). If T is
not exact, there exist nontrivial sets in F = (1,57 "B. Note that T~'F = F
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(¢ mod 0); this property defines an automorphic factor. We denote by (Y, F,v;®)
the factor map induced by T on F; this is the mazimal automorphic factor of T
(cf. [4]).

When we refer to a measure p’ for T as being tail trivial, we mean that
Nn>oT "B = {0,X} mod sets of y’ measure 0; however p' is not necessarily
nonsingular for . In Section 5 we show that tail trivial measures arise natu-
rally when a nonsingular nonexact measure y is decomposed over the maximal
automorphic factor of T'.

In [4], the maximal automorphic factor of a countable-to-one endomorphism
was shown to be isomorphic to the quotient relation of the following two natural
orbit relations associated to T. We define the amenable equivalence relations
Ry and St C Ry (cf. [2] and [6]) as follows:

(z,y) € Rr C X x X <= T"z = T™y for some m, n > 1.
We also associate a subrelation St C Ry by:
(z,y) € ST <= T"x = T"y for some n > 1.

When the endomorphism T is clearly understood, we write R and S for Ry and
St. For z € X, let

Rz)={ye X :(z,y) € R} and S(z) ={y € X : (z,y) € S}.

We refer to R(x) as the big orbit of z under T and to S(z) as the lateral orbit
of . One can verify that S(z) = {J,,5o 7 "T"z [6]. Similarly we define for each
set A € B, -

R(A) = {y: (z,y) € R for some z € A},

and we say that R is nonsingular provided pu(4) = 0 & p(R(A)) = 0 for all
A € B. We say R is ergodic (with respect to ) provided R(A) = A = u(A) =0
or u(X\A) = 0. We have identical definitions for the subrelation S.

The endomorphism T is one-to-one if and only if S is trivial m-a.e. (each
equivalence class consists of exactly one point). For invertible T', R is the usual
equivalence relation associated to orbits which is studied in detail in [7] and [10].

For noninvertible 7', the following connections were proved in [6] to exist between
T and the relations R and S.

1. T is nonsingular < R is nonsingular.

2. T is ergodic & R is ergodic.

3. T is nonsingular = S is nonsingular (and the converse is false).
4. T is exact & S is ergodic.

Also, it is easily checked that:
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5. For all n € Z, S(T"z) = T"(Sz) for a.e. x € X.

It was proved in [4] that:
6. (X,NusoT ™B,k) = Rr/Sr

The following proposition shows that the measure p on X can always be
assumed to be nonatomic if T is n-to-one and conservative. This proposition is
false if n = 1.

Proposition 2.1. Ifn > 2 and T is an n-to-one endomorphism on
(X, B, ) which is ergodic, conservative, and nonsingular, then u is a nonatomic
measure.

Proof. Suppose that y is an atomic measure; then there exists some p € X
such that u({p}) > 0. By ergodicity the support of x, denoted supp(u), satisfies
supp(¢) € Rr(p); by nonsingularity of T and Ry we have supp(u) = Rr(p).
This implies that for every z € St(p) we have u(z) > 0, and by conservativity
of T there exists a smallest m € N such that u(T"™zNzx) > 0; i.e., T™z = x.
Similarly we have a smallest m’ > 1 such that 7™ p = p. However, by our choice
of z, for some r > 1, T"x = T"p, so the forward orbit of x agrees with the
forward orbit of p after some finite number of iterates. This means that the set

{qu}qu = {p’Tpa 7Tm _1p} = {pOa--* apm’——l}
must be the same as the set
{T%2}g>r = {=,Tz,....,T™ 'z} = {z0,...,Tm-1},

som = m'. Furthermore, if we reorder each set so that pp = T"p, p; = T"*1p,...,
etc.,and zg = T"z, 1 = T" 'z, etc., then we see that p; = z; fori=0,...,m—1,
so £ = p. Therefore St(p) = {p}, and T is not n-to-one. This contradiction
shows that p is nonatomic. O

3. The Rohlin factors of T. The authors showed in [4] that the factor
(Y, F,v;®) of the endomorphism (X,B,u;T) is isomorphic to the quotient re-
lation Ry /St for T. In this section we look at a related factor which we call
a Rohlin factor of X, and show in what sense it represents the kernel of Y, or
St. We assume from now on that T is n-to-one. We describe in more detail the
partitions defined in Section 1.
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Definition 3.1. Let e denote the point partition of X. Let Py =
{Ao,A1,...,An_1} be a partition of X into measurable subsets such that T|4, =
T; is a bijection a.e. between A; and X. The partition P; is defined as in [13]
to separate points of T le; i.e., Py VT 'e = ¢, where PV Q is the partition
consisting of intersections of sets in P and Q. The choice of P; is not unique,
though Parry gives a canonical (nonunique) method of choosing it [12]. We call
P1 a Rohlin partition for T. We define the increasing sequence of partitions
PL<Py<oe, by Py = PLVT PV VT G-DP: clearly PV T ' = e.
The Rohlin factor associated to P; is the factor of (X,B,u) associated to the
measurable partition \/,5,P; = P. We remark that P is defined to be the
smallest common refinement of all P; [13], and satisfies T~!P < P.

Some partial results about uniqueness of Rohlin factors are given in Proposi-
tions 3.7 and 3.9. However all Rohlin partitions share some common properties.

Lemma 3.2. For any Rohlin partition Py = {Ao,A1,...,An—1}, for any

k>1,let P, =P, VT 'PyV---VT~-*=DP,  Then every atom of Py is of the
form

A’ioil"'ik—l = Tizl OT;-:l o-oT™ ! X = Aio ﬂT_lA,;l n--- OT"(k_l)Ai,c_l

k-1
with i; € {0,1,...,n—1} for 0 < j <k, and satisfies:

(1) T* restricted to Aigiy..ir_, 18 one-to-one and onto X (i.e., Py is a Rohlin
partition for T*);

(2) TAigiy..ip, = Aiy..ip, (TAs, = X);

3) Aip.i = TizlAil...ik;

(4) z € Aiy..i, if and only if T’z € A;; for every 0 < j < k;

(5) The Jacobian function J,r« (defined in Section 1) is independent of the
choice of Py for all k > 1;

(6) For each k >0 and 0 < ip,...,ix <n—1,

1
/1:( zou...zk) XJ/J,T""'I(T'_II-‘Z.:].'..T{};Ix)

%0

du(z)

= [ [ @ oTiso o) @) duto)

If T is n-to-one, we can identify the factor space of X associated to a Rohlin
factor with the space of one-sided sequences on n states in the following canonical
way. We define

o0
z=T[{0.1,...,n-1};,

=0
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and denote a cylinder of length k by
Cigiy..in_1 ={2 € Z : 29 = ig,21 = i1,... , 2k—1 = Gk—1}

The cylinders of length > 1 generate D, the o-algebra of Borel sets on Z. We can
write the factor map associated to a Rohlin partition P; by 8 : (X,B) — (Z,D)

by [8(z)]; = j if T'z € A; € P1 (using the convention that 7%z = z). Clearly
B~ID C B and B~ (Cipiy...ix) = Aigiy..ix- 1f by o we denote the shift map
[02]; = zi+1, then by the definition of 3 we have that for all k € N, [3(T*z)]; =
[Bz]k+i = [0*Bx];. In other words, the following diagram commutes and 3 is a
factor map from (X,B,u;T) to (Z,D,p;0) with p = ps~1.

X—Z-’C——-»X

T

y"_k,y

Since (3 is completely determined by P, which in turn is determined by the choice
of Py, Definition 3.1 implies (Z,D, p) is isomorphic to the Rohlin factor for P;.
By Proposition 2.1 the measure p is continuous; equivalently, for every atom
AeP,u(Ad)=0.

Lemma 3.3. For p almost every x € X, B(Srz) = S,(Bz).

Proof. We suppose that y € Srx; then there exists a minimum &k > 1 with
Tky = T*zx. Then B(T*y) = B(T*z) so o*(Bx) = o*(By). It follows that
By € S (Bz).

We now suppose that we are given a z € S,(8z), z # Bz; then there is a
minimum k > 1 with 6z = o*Bz = BT*z. This means that there exist two
disjoint cylinders of length k, Cjgi, . .i,_, # Cjoji...jx_: Such that z € Cyp4,..4,_,
and Bz € Cjyj, .. j,_, - This means that Bz € Aigiy..ip_,» and since A i, i, F
Ajoir...jx_1» We have z' # z for every 2’ € f~1z. Since T* is one-to-one and onto
from Ajj, . j._, to X, and (T;,_, oT;, , 0---0T; )~ ! is one-to-one and onto from
X onto Ay, .. 4,_,, We choose

z' = (T;

oT;, ,o-0oT; )—10Tk1;.

k—1 k-2

By our choice of ' it is clear that T*z = T*z' so o*(Bz') = oF

z, and z,
Bz’ € Cigiy..ir_,- But the set 07%(o%2) intersects each cylinder of length k in

exactly one point, so z = 8z’ and z’ € Spz. The lemma is proved. O
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Let (Y,F,v;®) be the maximal automorphic factor of (X, B, u;T). We recall
from [4] that this factor is generated by the partition

n = n T .

i>0

We say that the factor (Z,D, p;0) of (X, B, u; T) is strictly contained in (Y, F,v;®)
if every atom of the partition P which generates Z is the union of atoms of
the partition n’ which generates Y. The following proposition characterizes the
invertible maps.

Proposition 3.4. Assume T is a nonsingular n-to-one endomorphism
forn > 1. Then n = 1 if and only if some (equivalently every) Rohlin factor
(Z,D,p;0) is strictly contained in (Y,F,v;®).

Proof. (=) If T is an automorphism then (X,B,;T) = (Y, F,v;®).

(<) If Z is a Rohlin factor strictly contained in Y, then each atom of P is a
union of atoms of 7' = ;5. T~'e; then for any z € Z there exists a measurable
subset C of Y such that 7'z = {J,cca™'y. Since o'y is an Sr-invariant subset

of X, it follows that for any z € ™1z, for every ' € Sp(z) C B!z we must
have B(z) = B(z'). However, if z # z’ satisfies ' € St(z), then B(z) # B(z')
by arguments similar to those used in Lemma 3.3. Therefore St (x) = {z} for p
a.e. x, which implies that n = 1. This proves the proposition. O

In Section 5 we will give a list of equivalent necessary and sufficient condi-
tions under which the factor measure p is exact with respect to ¢ for a Rohlin
factor Z. To this end, we will consider the join of the factors Y and Z in X. We
recall that o= F = (5, T "B is the tail o-algebra associated to the measurable

partition of X given by ' = ;5,7 ‘c and B~ !D is the o-algebra associated to
the measurable partition P = \/,; P;. It is easy to show that for any j € N,

(ﬁT“is)V (\j/'Pi) =¢ (¢ mod 0).
i=1 i=1

Furthermore, we have

j—1
< nT_’e< ﬂT"€< <T le<e
i=1 i=1

and
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Then P = sup P; and o' = inf ()]_, T ‘¢ and it seems likely that PV 7' = e.
However, in the case when T is exact, it is not always true that P = ¢ ( mod 0).
We describe a four-to-one exact endomorphism whose unique Rohlin partition
P; does not generate B. (The example was given by W. Parry and P. Walters
[18] to illustrate a slightly different phenomenon.)

We precede the example with a proposition which gives sufficient conditions
under which the Rohlin factor is unique and is a Bernoulli shift.

Proposition 3.5. Suppose that T : (X,B,u) — (X,B,u) is an n-to-
one endomorphism with Jr(xz) =n a.e. Then T preserves u, and for any Rohlin
partition Py, the associated Rohlin factor (Z,D,p;o) is isomorphic to the
(1/n,...,1/n) one-sided Bernoulli shift.

Proof. Clearly w,r(z) = 1, since
1 1 n

@ e T

By the Kolomogorov extension theorem the measure p on Z is completely deter-
mined by its values on the cylinder sets in D; in particular it is determined by
its values on the atoms of Py, for each k£ > 1. By Lemma 3.2 (6) we have that
w(Aigiy ..ir_,) = 1/n* for any atom Aiq..ix_, € Pr. Hence for every cylinder set
of length k in Z,

- 1

p(Ciohm’ik—l) = /L(,B 10i0i1~~~ik—1) = p(Ai0i1~~~ik—l) = ;I,—E
This means that (Z,D,p;o) is just the (1/n,...,1/n) Bernoulli shift, as
claimed. O

Example 3.6. Let X = R?/Z2, the 2-torus, with B the o-algebra of Borel
sets and p = 2-dimensional Lebesgue measure. Let T be the endomorphism on
X determined by the integer matrix:

(3 )

This gives a four-to-one measure-preserving endomorphsim of X with J,r(z,y) =
4 for all (z,y) € X. To show that T is exact, we observe that if

2 1 2 0
T].— (1 1)7 TZ_' (0 2)7

then T' = Ty oTy, = Ty0T;. Since T} is an automorphism and T3 is clearly
exact, it is easy to see that the tail sets of T' are in one-to-one correspondence
with the tail sets of T5, so T is exact. If the Rohlin factor generates B, then,
by Proposition 3.5, T is isomorphic to the (i,... ,%) Bernoulli shift (as is T5).
However, one can easily compute that h,(T) = log(3+v/5) [17], so T is not
isomorphic to T5.

The same proof gives the following more general version of Proposition 3.5.



246 K. DAJANI & J. HAWKINS

Proposition 3.7. If T is n-to-one and there exists a Rohlin partition
Pl = {AO)Ala“ . aAn——l}

such that J,r(x) = a; on each A;, then T preserves p and the measure p on the
Rohlin factor is the i.i.d. Bernoulli measure given by {a1,...,an}.

We calculate the Radon-Nikodym derivative of the factor endomorphism
of T on a Rohlin factor. We define, for each & > 1, Pr(z) = Aigiy..ip_, if
T € Aigiy..ix_, € Pr.

Proposition 3.8. For any Rohlin factor (Z,D, p;0),

_1(7’1«(37)).

dpa lim
e 1 (Pr(2))

(Bz) =

Proof. Since (Z,D,p;o) is a factor of the probability space (X,B,u;T), we

have that . )
d d
260 =, (Y~ | 7))

for p a.e. x € X. We fix z; then for each k > 1, we have that

duT~1 1 duT—?!

E,L( )ﬂ) (z) = m‘/XXPk(z)'W(y) du(y)
1

~ u(Pr(2))

_ p (T~ Py (z))

u(Pi(z)

By the Increasing Martingale Theorem we have,

/ XPi(z) © Tdp(y)
X

dpa 1

(Bz) = hm E, (dlﬂ;l "Pk> (z) = 11 p(T~ 1 Py(z )). O

k—oo  pu(Pr(x))

Proposition 3.9. Suppose v ~ pu on (X,B) satisfies dy/dy = h €
LY(X,B,u). Then for any choice of Rohlin partition Py, the associated Rohlin
factors (Z,D,pu;0) and (Z,D, py;0) are isomorphic, and

dpyo™' | _ Ep(h|oc7'D)(c"Bx) dpuo?
do, P9 = h(Bz) dpy

(Bz)

for pu almost everywhere z, where h = dpy/dp, = Eu(h | P) a.e.
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Proof. We first note that changing to an equivalent measure on X preserves
the property that P is a Rohlin partition for T'. It suffices to show that p, ~ p,;
then the first statement follows immediately and the second statement follows
from [8]. For any set A € D, p,(A) = u(8~1A) = 0ifand only if 0 = y(8714) =
py(4). a

4. The product factors of T. We consider first the join of any factor with
the maximal automorphic factor for T', then focus on the specific properties of the
join when Z is a Rohlin factor. Let (X,B,u;T) be an endomorphism of (X, B, 1)
as above. Recall from Section 3 that the measurable partition 7’ = inf ;5,7 ‘e
satisfies T~ !5 = %'; the maximal automorphic factor (Y, F,v;®) is the factor
space associated with n'. Let a : X — Y denote the factor map. Let ¢ be
any measurable partition of X such that T-'¢ < ¢ mod 0. We will denote by
(Z,D,p;0) the factor space associated with ¢ and let 8 : X — Z denote the
factor map. (Our choice of notation is justified since later on Z will be restricted
to a Rohlin partition.)

Lemma 4.1. The partition n' V  is measurable and satisfies T~ (n' vV () <
7' V ¢ mod 0.

Proof. The measurability of 5’ V¢ follows from [13]. Let A € T~1(n'V ();
then there exist C € ' and D € ¢ such that A=T"}(CND)=T"'CNT~'D.
Since T~/ = 7/, then T~1C € 7/, and T~!¢ < ( implies that there exists a
family of atoms {D,}, in ¢ such that 77D = (J,D,. Then A = (T~!C)Nn
U,D.=U,(T~*CND,), which is a union of atoms of ' V (. O

Let (X,B,[i;T) denote the factor space associated with 7' V(. An atom or
point in X is a set of the form Z = C N D for some C € ' and D& (. Since 7’
generates the factor Y, C can also be expressed as C= a~ !y for some y € Y,
and similarly D = B~z for some z € Z. In other words, each Z € X can
be written in a unique way as # = a~'yNB 2. The o-algebra B C B is the
subalgebra generated by n' V(, and [i is just the restriction of u to B. The
factor endomorphism T (on B C B in X) is defined as follows [cf. 17] : for each
Z=CNDeX,

T(CND)=C'nD' ifT(CND)CC'NnD’

where C, C' € ¥ and D, D' € (. T (as a map on points in X) can also
be expressed as follows: for # € X, T(z) = &' where T(a"lynNnpB~1z) C 7.
Since T(a"lyNB~12) C a t®yNnpBloz, 2’ = a 1®yN B loz. We define the
canonical projections @ : X - Y and §: X — Z by a(z) = y and () = z
where y € Y and z € Z are such that Z = a~'y N B3~1z. The following properties
follow immediately from the definitions and properties of factor maps.
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Proposition 4.2. The following six assertions hold.

(1) a(z) = a(z) and B(z) = B(z) for x € X such that x € T and i a.e. 7.

2) fz=a ynpB 'z for somey €Y and z € Z, then T = a"'yNp~1z; i.e.,
points of X can be written as @~ 'yNB~1z fory €Y and z € Z.

(8) T(a 'ynB~lz) =a'®ynploz.

(4) @oT =®oa and BoT =00 }p.

() T™'n' =7 and T7'¢ < (.

(6) &, B are factor maps for (X,B,p;T) with factor endomorphisms ® and o
respectively.

Let {41y }yey and {7, }.cz be the disintegrations of u over the factor spaces
Y and Z respectively. Then for any E € B,

W(E) = [ m(B) dvts) = [ 2:(8) dot).
We now define a measure m on the space (Y x Z, F x D) by: for each A € F,
B e D,
m(AxB)= [ 1 (3B) do(y)

We extend the measure to all of F x D by the Kolmogorov Extension Theorem
(cf. [11]).

Theorem 4.3. We have
(X,B,i;T) = (Y x Z,F x D,m;® x o).

Proof. We define v : (X,B,i,T) — (Y x Z,F xD,m,® x o) by %(z) =
(az,B7) ie.,
Y@ tynptz) = (y,2).

From the discussion above, it follows that the map v is a measure-preserving
isomorphism satisfying 9o T = (® x 7) 0 9. O

Remarks 4.4.
(1) If instead we write u(E) = [,v.(E)dp(z), then m is also defined by

m(A X B) = /B'yz(a"lA) dp(z).

(2) (Y,F,v;®) is the maximal automorphic factor of (X,B,;T). O

Let {my}ycy be the disintegration of m on Y x Z over the factor space Y.
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Proposition 4.5. For everyy €Y,
(Y xZ, FxD,my) = ({y} x Z, (F x D)y, my) = (Z,D, py).

Proof. Using Theorem 4.3, by a slight abuse of notation, we will consider the
homomorphisms & (= @o%~!) and 3 (= o4 ~1) to be the canonical projection
maps from Y X Z to Y and Z respectively. For each y € Y, the set a~ly = {y} x
Z can be regarded as a Lebesgue space by setting (F x D), = (F x D)Na"ly.
The map

B |{y}><Z: ({y} X Z» (]: x D)y) - (Z,'D)

is just the identity map on the Z coordinate.

The measure m,, which is a measure on Y x Z with support completely
contained in {y} x Z, trivially induces a measure on (Z,D). We will denote that
measure by p, (= my(!) to distinguish it from the same measure considered
on the product space. We also have that p, = pyﬂ‘l; for each D € D the map
y — py(D) is measurable in y. |

We now turn to the specific factor (Z,D, p;o) which is generated by a Rohlin
partition Py = {Ag,A1,...,An—1} of X. The collection of sets C; = {z € Z :
zo =1} = B(A;) for 0 <4 < n—1 determine a Rohlin partition of Z (for o and
p) which generates the o-algebra D. Since p(C;) = uB~(C;) = u(4;) > 0, we
have that o is n-to-one with respect to p.

Proposition 4.6. The partition
Pr={YxC;:0<i<n—1}

is a Rohlin partition for (Y x Z, F x D, m; ® X o); furthermore ® x o is n-to-one
with respect to m.

Proof. Clearly P; is a measurable partition of Y x Z. Let o; denote the
map o |g;: C; — Z defined on (Z,D); then for every w = (i,w1,ws,...) € C,
0w = (w1,ws,...) and for 2z = (20,21,...) € Z, 05 *(2) = (i,20,21,...). Therefore

-1

0, o0;=1Idg, and o500, 1 = Idz. It suffices to show that a measurable inverse

exists for ® x g;; it follows from above that (& x 0;)o (@ ! x 0, ") = Idyxz
and (7! x 07 1) o(®x0;) = Idyxc,, m a.e. Clearly the map &~ ! xo; ! is
measurable from (Y x Z, F x D) to (Y x C;, F x (DN C})), so the result follows
immediately. Since m(Y x C;) = u(4;) > 0, & x o is n-to-one. The proof is
done. |

Corollary 4.7. (Z,D,p;o0) is the Rohlin factor of (Y x Z, F x D, m; ® x
o) associated with the Rohlin partition P;.
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We recall that {my},cy denotes the disintegration of m over the factor
space Y. By the nonsingularity of Sgx, with respect to m, we have that each
my is a tail trivial measure on (Y x Z, F x D) for which the relation Sgx, is
nonsingular (and ergodic) (cf. [4] or [14]).

Proposition 4.8. For everyy € Y, z € Z, we have Spx,(y,2) =
{y} x S52.

Proof. For eachn>1, (dx o) ™(® % 0)"(y,2) = (y,0 "0"%). O

Recalling that tail triviality of p, for o is equivalent to ergodicity with
respect to p, of the relation S;, we have the following.

Corollary 4.9. Foreveryy € Y, py is an ergodic and nonsingular measure
for S, on (Z,D).

Proof. We use the fact that m, is ergodic and nonsingular for Szx, on
Y x Z, and Propositions 4.5 and 4.8, and the result is proved. O

Remarks 4.10.

(1) Corollary 4.9 does not imply that p, is nonsingular for the map o on Z.
In fact, such nonsingularity does not always occur. This will be discussed
further in the next two sections.

(2) The nonsingularity of p, for the relation S, plus the fact that S,(C;) = Z
for all 4 implies that py(C;) > 0 for all i. However, since o is not nonsingular
with respect to p, in general, it cannot be said to be n-to-one (cf. Section 1).

The discussion above proves the following main theorem of this section.

Theorem 4.11. Assume that T is an n-to-one nonsingular ergodic con-
servative endomorphism of (X,B,u). Then T has a factor isomorphic to the
Cartesian product of an automorphism ® with an n-to-one shift map o on
(Y x Z, F x D,m). The measure m is of the form for any C € F x D :

m(C) = /y / ey ) W)

where v is a nonsingular conservative ergodic measure for the automorphsim ®,
and each py is a tail trivial measure for o on Z. Furthermore m is a nonsingular
joining for ® x o with respect to the factor measures v on (Y,F) and p on (Z,D)
given by:

o) = [ puayavty) vAeD.

The marginal measure p is ergodic, nonsingular and conservative for the shift o
on (Z,D).
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We conclude this section with a formula for the Radon-Nikodym derviative
of the factor induced by T on Y x Z (cf. [4] for proof).

Proposition 4.12. We have the identity

dm(® x o) ! dvd—1 d(pg-1,0~1
_(_)_(y’z) - (y) . (P<1> ly )
dm dv dpy

(z), m almost everywhere.

5. Exactness properties of the marginal and fiber measues. For
every choice of Rohlin partition, the factor measure p on the associated Rohlin
factor (Z,D) is defined by p(4) = uB~1(A) = mB~(A) and disintegrates over
Y by

p(A) = /Y py(A) du(y) = /Y 1y (A) do(y)

for all A € D. The measure p is always nonsingular for o by the nonsingularity
of T with repsect to p while the p,’s are always tail trivial for o by the tail
triviality of pu, for T. We would like to determine under which conditions p
reflects various properties of a generic p,; in the strongest case we will see that
for v-a.e. y € Y, py is equivalent to p. This can fail to be true as the example
in Section 6 shows, but under weaker hypotheses we still have exactness of p.
We give necessary and sufficient conditions under which p is an exact measure
for 0. The second author and Stanley Eigen have constructed examples of n-to-
one endomorphisms 7" which are ergodic but not totally ergodic with nonexact
Rohlin factors; in all known examples, v is an atomic measure.

We say that two factors of X, (Y, F,v) and (Z,D, p), overlap if there is some
nontrivial factor (W,S,) strictly contained in both Y and Z. Otherwise, ¥ and
Z are nonoverlapping; in this case, for any A € F x D such that A € @ 'F and
A € B~'D we have m(A) =0 or 1.

Theorem 5.1. For any Rohlin factor (Z,D, p), the following nine proper-
ties are equivalent:

(1) p is an exact measure for o.
(2) The space (Z,D,p) contains no nontrivial automorphic factor for o.

(3) The spaces (Y,F,v) and (Z,D,p) have no nontrivial common automorphic
factor.

(4) The factors (Y,F,v) and (Z,D,p) are nonoverlapping.

(5) V A €D, either py(A) =0 for v a.e. y €Y or py(A) >0 forv a.e. y €Y.

(6) YV AEN,>o0 "D, either py(A) =0 for v a.e. y €Y or py(A) =1 forv
a.e. y € Y.

() V A € D, either py(S;A) = 0 for v a.e. y €Y or py(S;A) = 1 for v
a.e.y€y.
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(8) VA €D, and for v a.e. y € Y, either py(A) = 0 and py(c™1A) = 0, or
py(A) >0 and py(c~1A) > 0.

(9) V A € D, either py(A) = 0 and py(c™*A) =0 forv a.e.y €Y, or py(4) >0
and py(c~1A) >0 forv a.e. y €Y.

Proof. (1) & (2): The tail sub-o-algebra of (Z,D) is the maximal automor-
phic factor for o. Therefore the measure p is exact for o if and only if Z has a
trivial tail sub-o-algebra if and only if Z has no nontrivial automorphic factor.

(2) = (3) trivially.

(4) = (1): Let A€ (),500 "D. Then

A (\(@x0)™(FxD)=a'F,
n>0

i.e., 3 1A € F x D belongs to a~'F and 3~'D. Since Y and Z are nonover-
lapping in Y x Z it follows that p(A) = m(B~'A) = 0 or 1. Therefore, p is
exact.

(3) = (2): The automorphic factors for T’ on (X, B, i) are ordered by inclu-
sion [13], with Y the maximal automorphic factor for 7. Any automorphic factor
of 0 in Z is an automorphic factor of T since o is just the factor endomorphism
of T on Z. Consequently, if Z has a nontrivial automorphic factor for o, it is
contained in Y.

(9) = (5) is trivial.

(5) = (4): Suppose that (5) holds and Y and Z both strictly contain the
factor (W,S,v). Let mz and my denote the factor maps from Z and Y to W.
Then there exists some set D € S with 0< (D) = p(rz71D) = v(ry~1D) < 1.
Since p(rz~1D) > 0, (5) implies that for v a.e. y € Y, p,(7z71D) > 0; that is,
v{y: py(B~'rz71D) > 0} = 1. But

vy : my(B'mz D) > 0} = vy : py(a”'my~'D) > 0}

= v{y: pylamy D) = 1) = 1,

since py(a~ry~1D) = Xx71p(y) This implies that v(D) = 1, so the factor is
trivial.

(6) = (9): By [14], for each A € D the set Y4 = {y : py(4) > 0} is
measurable; so is the set @'Y, = {y : poy(4) > 0} = {y : p,(c714) > 0} =
Y,-14. By (5), v(Ya) = 1 for all A such that p(4) > 0; by nonsingularity of
®, v(Y,-14) = 1 as well. Consequently 1 = v(Y4NY,-14) = v({y : py(4) >
0 and py(c~'A) > 0}). A similar statement holds if p(A) = 0, so (9) is proved.

(9) = (8) is trivial.
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(8) = (5): As defined above, for each A € D the sets
Ya ={y:py(4) >0},
YA ={y:py(4) =0},
Wy =Y,14={y:py(c74) >0},
OV =YL, = {y: py(0724) = 0}
are all measurable sets in Y. By (8) we have that
v({(YanY,-14)U(YaNY )} =1

To show (5), for each A € D we define on Y the measurable function F4(y) = 0 if
py(A) =0 and Fa(y) =1 if py(A) > 0. The assumption implies that Fs(®y) =
F4(y)v a.e., by ergodicity of ®, Fy is constant v a.e., so (5) holds.

(6) < (7): This follows immediately since {S,A : A € D} = (),,50 0 "D
(mod 0) with respect to every py.

(1) = (6): Suppose that A € (),,5,0 " D. By exactness of p, either p(4) =0
or p(A) = 1. If p(A) = 0, then clearly p,(A) = 0 for v a.e. y. Let p(A) = 1;
by tail triviality of each p,, for each y € Y, either p,(A) = 0 or py(A) = 1. Let
N ={y €Y :py(A) = 0}; then 1 = p(4) = [y 5 py(4) dr(y) = v(Y\N), so
py(A) =1, v ae.

(7) = (5): Let A € D; by the nonsingularity of S, with respect to each p,,
if py(S,A) = 0 for v a.e. y then py(A) = 0 for v a.e. y. If p,(S,A) = 1 for v
a.e. y then p,(A) > 0 for v a.e. y. Since (7) says that one or the other holds, (5)
is proved.

(6) = (1): Let A € N,>00 "D with p(4) > 0. It suffices to show that
p(A) = 1. By (2) we must have that p,(A) > 0 for v a.e. y, and tail triviality of
py implies that p,(A) = 1 for these y. Thus p(A) = 1. The proof of Theorem 5.1
is complete. O

We now define
L={yeY:p, ~pyo '}

One can show, using the nonsingularity of S, that
¥ = {y: o is (both forward and backward) nonsingular with respect to p,}.

It is clear from Theorem 5.1 (8) and (9) that if ¥ has full measure in Y, then p is
exact. However we give an example in Section 6 to show that nonsingularity of
o for v a.e. py is not a necessary condition for exactness of p, i.e., conditions (8)
and (9) in Theorem 5.1 are strictly weaker than nonsingularity of o with respect
to v a.e. py.
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Lemma 5.2. The set ¥ satisfies @~ 1(X) = X; if & € F, then v(X) = 0
orv(X) =1.

Proof. We first show that ¥ C ®~1X. Suppose y € E; then p, ~ pyo~t ~
pay. To show ®y € T as well, it is enough to show that p,o~! ~ p,o~2. This
follows from nonsingularity of o for p,.

We now assume that y € ®~13; then ®y € %, so o is nonsingular with
respect to pgy. Since pgy ~ pya‘l, it follows that o is nonsingular with respect to
pyo L. By nonsingularity of S,, p,o~1(A) = 0 & py,o~10(A) = 0 & py(4) =0,
80 py ~ pyo~!, hence y € L. If & € F, the ergodicity of ® iiplies the last
statement. ]

Corollary 5.3. If ¥ contains any B € F of positive measure, then ¥ € F
and v(X) =1 and p is ezxact.

We state a theorem giving necessary and sufficient conditions under which
the factor we have constructed is a product (i.e., m is equivalent to product
measure). The equivalence of (1) and (2) appears in a paper by G. Brown and
A. Dooley [1].

Theorem 5.4. The following are equivalent:

(1) Forv ae.y€Y, py~p;

(2) m 1is equivalent to the product measure v X p;

(3) The factor endomorphism of (X,B,u;T) induced on (Y x Z, F x D, m) is
isomorphic to the Cartesian product, with product measure, of an exact n-
to-one endomorphism and an ergodic automorphism.

Proof. (1) = (2): For each C C Y x Z, the function d¢(y) = my(C) is
measurable on Y. Since my(C) = p,(Cy) with Cy = {z : (y,2) € C} € D,
we have 6c(y) = py(Cy) is a measurable real-valued function on Y. We also
have that 65 (y) = p(Cy) is a measurable real-valued function on Y, by Fubini’s
Theorem applied to Y x Z with v x p. Assumption (1) says that for each fixed
C e FxD,forvae ye€Y, éc(y) =0 if and only if §;(y) = 0. Our notation
allows us to write, for every measurable C CY x Z,

mm=meme=L%@ww,

and

v pl0) = [ o(Cy) avty) = [ 80) o).
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We now have that
0= /Y 6c(y) dv(y) <= /Y bc(y) dv(y) =0,

and this implies that m ~ v x p.

(2) = (3): We have shown that T on (X,B,) is isomorphic to ® x o
on (Y xZ,FxD,m). Now (2) implies that T is isomorphic to ® x ¢ on
(Y x Z, FxD, v xp). To show that p is exact, we will prove that Theorem 5.1
(5) holds. For any A € D, p(A) = 0 implies trivially that p,(A) = 0 for almost
every y. We assume now that p(A) > 0, and set A = {y : p,(4) = 0}. Since
m(Ax A) = Jaipy(A)dv(y) = 0, then by hypothesis, v x p(Ax A) = 0, so
v(A) = 0. Therefore p,(A) > 0 v a.e.

(3) = (1): We can assume without loss of generality that T = ® x o with ®

an automorphism of (Y,F,v) and ¢ an exact endomorphism of (Z,D,p). Then
clearly Ry /St gives ® on Y so each p, = p. a

Corollary 5.5. Under any of the equivalent assumptions of Theorem 5.4,
r=Y (v mod 0).

Proof. Assume that statement 1 of Theorem 5.4 holds and define B = {y €
Y :py ~ p}. If y € B, then y € I, since p is a nonsingular measure for o. Since
v(B) = 1 by hypothesis, the completeness of v implies ¥ € F and »(X) =1. O

Remark 5.6. In an earlier version of the paper the authors posed the
following question. Is every ergodic nonsingular shift measure p on the n-state
space (Z,D) which gives positive measure to every finite length cylinder also
ergodic for the odometer on the same space? If p is a product measure, then
the answer is yes. Of course, in general p cannot be assumed to be a product
measure; by results of G. Brown and A. Dooley on ergodic odometer measures
(1], an equivalent question is whether every measure with the above mentioned
properties for the shift is of weak product type. Examples have been constructed
by Stanley Eigen and the second author of Rohlin factors (Z,D, p) for which p
is not exact. The examples give explicit measures which are ergodic for the shift
but not for the odometer. A paper on this is in preparation.

6. An example of an endomorphism with non-product measure on
the product space. In this section we construct an endomorphism whose prod-
uct decomposition into an automorphism and a family of exact endomorphisms
does not give a measure equivalent to any product measure. The existence of a
non-product measure example, due to W. Parry and P. Walters, is asserted in
[17] but does not appear there.
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We will construct a two-to-one endomorphism 7' on the product space

YxYt= ﬁ {0,1}, x ﬁ{o,l},c
k=0

n=—oo
with the following properties:

(1) T is the product of the two-sided shift with the one-sided shift;
(2) T is constructed to be finite measure-preserving and ergodic with respect
to the following measure;

(3) OnY we put v = the (1,1) i.i.d. Bernoulli measure (we denote by B x Bt

the product Borel o-algebra on Y x Y1), and the measure on Y x Yt is of
the form

W@ = [ p(Cray) doty).

We specify the measures p, on (Y*,B") according to the following algo-
rithm. We fix any A € (0,1). We define two measures p° and p! on the space
{0,1} by p°(0) = p°(1) = 3, and p*(0) = 1/(1+ A), p*(1) = A/(1+ ). For each
y €Y, we define p, to be the infinite product measure given by

o]

oy =[] "

=0

That is, we consider y = (...,Y—1,%0,Y1,-+ sUn,...) and the i*® factor in the
measure p, is o if and only if y; = j. Each py is an infinite product of factors of
two different measures on Y+ and, by results of Kakutani [9], for v a.e. y € Y, p,
is singular with respect to the shift o.

As mentioned above, the invertible action we put on Y is the two-sided
shift. To avoid confusion, we denote this invertible map ® as in Section 2; then
(®y)s = Yit1. It follows that

oo (e o]
puy = [T = [
=0 i=1

We now restrict our attention to a single fiber {y} x Y™ with p, a measure on

D, and we compute pyo~1.

write

Suppose C' € D is any cylinder set; then we can
C= {z S Yt: 20 = 10,21 = U1,... ,2n = ’ln},
and
o7 N C)={2:20=0, 21 = i0,... , Zn41 = in}

U{z:20=1, 21 =%0y---2n41 = in}-
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Therefore p,(c1C) is equal to
[p°(0) - p**(i0) - p*2 (i1) -+ p¥+* (in)] + [p¥° (1) - p** (i0) - p*2 (i1) -+ P+ (in)]

= [ p¥+ (i) = pay(C).

J=0

Since an infinite product measure is completely determined by its values on
cylinder sets, we have that the two measures are equal. Consequently,

d—pgi-i =1 and -d—y—ql =1, almost everywhere,
dpay dv

so T' = ® x o is measure preserving by Proposition 2.11 in [4] and hence conser-
vative. To prove that T is ergodic, we first remark that computing Ry, ST, and
Ry /ST will give the same product structure we started with. That T is tail triv-
ial for each p, then follows immediately. We next note that any T-invariant set
is contained in the tail of B, where B denotes the product o-algebraon Y x Y+,
This implies that if T7'A = A mod 0, then A is of the foorm A = BxY™*
where B is some measurable set in Y. The ergodicity of ® on Y with respect
to v implies that ¥(B) = 0 or 1; the ergodicity of T with respect to u follows
immediately.

If we compute the Rohlin factor measure p = fy py, we see that p is the

infinite product measure determined by the probability vector (%ﬁ‘,\), 4%1*—_::)"\))

That is, 0 on (Y+,B7%,p) is a Bernoulli shift and hence measure preserving and
exact. On the other hand, using the notation of Section 5, we see that

v(E) =v({y:py ~pyo'}) =0,

so, by Corollary 5.7, p is not equivalent to any measure on Y x Yt of the form
v X v with v a measure on Y+. However, by uniqueness of Y, any other rep-
resentation of the system (Y x Y, Bx B, i) into the product of an automor-
phism with an exact endomorphism (with product measure) must be of the form
(Y x W, BxC, v x+v). This proves the assertion.
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